Guided Co-Modulated GAN for 360◦ Field of View Extrapolation
Dans le cadre des séminaires étudiants de l’IID, présentation de Mohammad Reza Karimi Dastjerdi, étudiant au doctorat en génie électrique à l’Université Laval, sous la supervision de Jean-François Lalonde sur l’usage d’un GAN co-modulé guidé pour l’extrapolation du champ de vision de 360◦.
Présentation de la conférence
We propose a method to extrapolate the 360◦ field of view of a single input image. To do so, we first propose improvements to adapt an existing GAN-based in-painting architecture for out-painting on panoramic image representations.
Our method obtains state-of-the-art results and outperforms previous methods on standard image quality metrics. One major limitation of this out-painting method, however, is that it affords limited control over the synthesized content beyond sampling a different style. To circumvent this issue, we propose a novel guided co-modulation framework, which drives the image generation process with a common pre-trained discriminative model. Doing so maintains the high visual quality of the generated panoramas while enabling a user to control the semantic content of the extrapolated field of view. We demonstrate the state-of-the-art results of our method on field of view extrapolation both qualitatively and quantitatively and provide a thorough analysis of our novel editing capabilities. Finally, we demonstrate that this benefits the photorealistic virtual insertion of highly glossy objects in photographs.
Restons en contact!
Vous souhaitez être informé des nouvelles et activités de l'IID? Abonnez-vous dès maintenant à notre infolettre mensuelle.