Persistent Mixture Model Networks for Few-Shot Image Classification

Webinaire offert par l’étudiant au doctorat en génie électrique Arman Afrasiyabi concernant l’usage de réseaux de modèles persistants pour la classification d’image avec peu de données. 

Date
  • 09 février 2021
Heure

15h00 à 16h00

Localisation

En ligne

Coûts

Gratuit

Résumé de la conférence

We introduce Persistent Mixture Model (PMM) networks for representation learning in the few-shot image classification context. While previous methods represent classes with a single centroid or rely on post hoc clustering methods, our method learns a mixture model for each base class jointly with the data representation in an end-to-end manner.

The PMM training algorithm is organized into two main stages: 1) initial training and 2) progressive following. First, the initial estimate for multi-component mixtures is learned for each class in the base domain using a combination of two loss functions (competitive and collaborative). The resulting network is then progressively refined through a leader-follower learning procedure, which uses the current estimate of the learner as a fixed « target » network. This target network is used to make a consistent assignment of instances to mixture components, in order to increase performance while stabilizing the training.

The effectiveness of our joint representation/mixture learning approach is demonstrated with extensive experiments on four standard datasets and four backbones. In particular, we demonstrate that when we combine our robust representation with recent alignment- and margin-based approaches, we achieve new state-of-the-art results in the inductive setting, with an absolute accuracy for 5-shot classification of 82.45% on miniImageNet, 88.20% with tieredImageNet, and 60.70% in FC100, all using the ResNet-12 backbone.

Restons en contact!

Vous souhaitez être informé des nouvelles et activités de l'IID? Abonnez-vous dès maintenant à notre infolettre mensuelle.