Towards Contextual Learning in Few-shot Object Classification

Webinaire offert par l’étudiant au doctorat en informatique Mathieu Pagé Fortin concernant l’usage de l’apprentissage contextuel dans la classification à partir de peu de données. 

  • 02 février 2021

15h00 à 16h00


En ligne



Résumé de la conférence

Few-shot Learning (FSL) aims to classify new concepts from a small number of examples. While there has been an increasing amount of work on few-shot object classification in the last few years, most current approaches are limited to images with only one centered object. On the opposite, humans are able to leverage prior knowledge to quickly learn new concepts, such as semantic relations with contextual elements.

Inspired by the concept of contextual learning in educational sciences, we propose to make a step towards adopting this principle in FSL by studying the contribution that context can have in object classification in a low-data regime. To this end, we first propose an approach to perform FSL on images of complex scenes. We develop two plug-and-play modules that can be incorporated into existing FSL methods to enable them to leverage contextual learning. More specifically, these modules are trained to weight the most important context elements while learning a particular concept, and then use this knowledge to ground visual class representations in context semantics. Extensive experiments on Visual Genome and Open Images show the superiority of contextual learning over learning individual objects in isolation.

Publication scientifique associée au webinaire

Restons en contact!

Vous souhaitez être informé des nouvelles et activités de l'IID? Abonnez-vous dès maintenant à notre infolettre mensuelle.